教案不仅是教学的工具,也是教师自我提升的重要资源,一份重视反馈的教案能够促进师生之间的有效沟通,提升教学效果,下面是85报告网小编为您分享的小学四年级数学苏教版上册教案6篇,感谢您的参阅。

小学四年级数学苏教版上册教案篇1
教学内容:
第64—66页
教学目标:
1、使学生进一步体会事件发生的可能性,体验等可能性游戏规则的公平性,能辨别游戏规则是否公平
2、让学生感受数学与生活实际的联系,激发学生学习数学的兴趣,培养自主探索的意识和与他人团结协作的精神
教学重点:
能制定公平的游戏规则
教学准备:
布袋、各色彩球
教学过程:
一、游戏导入,学习新课:
1、今天的数学课上,我们要来玩摸球的游戏。板书:游戏
老师取一口袋,里面装了一些球。规则:每次任意摸一个,然后放回。一共摸30次。摸到红球的次数多,算女生赢;摸到黄球的次数多,算男生赢。
把摸球的结果记录在书上的表格中。
老师请一个学生上前摸,其他同学做好记录。
摸球结束,统计两种球分别摸的次数。(红的多)
看了数据,你有什么问题?(红球摸的次数比较多,有可能红球的个数比黄球的个数多,很想知道究竟有几个红球和几个黄球。)
老师打开布袋,一一请出各球,发现:4个红球、2个黄球
你想说什么?(不公平)
为什么?(红球个数多,取的可能性就大一些。所以是不公平。)
那你觉得怎样放球就公平了呢?(比如……一句话:要红球和黄球一样多。)
2、各组按照本组的商定,摸球并做好记录
交流:出示一张表格,分别填入各组的数据
组数 红球个数 黄球个数 摸到红球的次数 摸到黄球的次数 哪方赢
1
2
3
4
5
6
合计
观察这份表,你发现了什么?
3、再来说一说:你认为怎样放的球,做这游戏是公平的?
举例说明。老师在学生说的.基础上,继续添上1个蓝球
讨论:公平吗?为什么?
指出:在这个游戏中,关键是要考虑摸到红球的次数和摸到黄球的次数是否一样多,所以在放球的时候,红球和黄取要
放得一样多。由于摸到蓝球等于没摸,所以并不影响游戏的结果,所以还是公平的。
继续添上2个蓝球、1个绿球……
小结:决定胜负求数的个数相同,那这个游戏就是公平的。
二、练习巩固:
1、很多游戏都需要考虑公平性,比如:(第1题出示)
看图后回答:用左边的转盘,谁赢的可能性大一些?有右边的转盘呢?
用哪个转盘做游戏是公平的?为什么?
2、(第2题)……你认为在哪几个口袋里摸球是公平的?
同桌互相说说理由,再全班交流
3、(第3题)扑克牌游戏。你认为这个游戏公平吗?为什么?
怎样修改游戏规则,才能使游戏公平?
交流,老师一一板书。比较多种方法,它们有什么共同的地方?
三、你知道吗?
在足球比赛的时候,常用抛硬币来决定开场。你认为公平吗?为什么?
师生共抛10次硬币,并做好记录。你发现了什么?
(虽然说是公平的,但在10次里,并不是出现了5次正面、5次反面。有的组甚至出现了正面次数远多与反面的情况。)
教学反思:
小学四年级数学苏教版上册教案篇2
1、讲清小数加减法的算理。如讲解例题:53.40 - 49.80学生不大容易讲出算理,但通过小组合作,全班讨论的方式,针对错例,有学生说出了错的理由,学生比较自然的说出相同数位没对齐或计数单位相同的数才能相加减等。
2、关注学生学习,强化学生自主学习,促进三维目标的落实。整节课着重关注的学习过程,注重挖掘利用学生练习中生成的错误,注意面向全体,倾心聆听学生的发言,给他们改正错误,成功展示自己的机会,通过剖析错误,从而建立起正确的价值观,让所有学生在学习中体验数学的价值。
3、注重发挥学生的独立性,培养学生的独立学习能力以及学习责任感,加强教学的针对性,使学生在本节课中有实实在在的认知、收获和数学感悟。
4、石老师的课挖得深、挖得透,努力拓展学生的探究空间。
石老师的课让人看到了课中的挖掘思维含量,拓展延伸学生的思维空间。她的课就在于不只让学生知其然,更让学生自主探究出所以然,引导学生探究出法则背后的知识。学生的思维总是在老师的设疑中步步深入,学生经历了刨根问底、追本溯源的思考过程,这就是科学的探究过程,就是在研究科学、自主建构知识。李老师的课挖的透,还在于问题设计得好,问题设计的有空间,符合学生的思维特点,所以,这样的问题促使学生的思维得到了开发和锻炼。
5、和谐的师生的关系。
课堂是学生的,就要把时间交给学生,让学生去研究、思考、发现。数学不在于学到多少知识,而在于真正使学生思维受到锻炼和启发。本节课,李老师几乎没有讲,她所做的只是在关键处设疑和恰当的总结,引着学生的思维步步深入,学生始终处在探究的主体地位,所以,学生真正得到了锻炼。老师讲得少。
四年级苏教版数学教案
小学四年级数学苏教版上册教案篇3
教学目标:
1、根据数位顺序的数级正确地写出亿以上的数。
2、培养学生初步的逻辑思维能力,会进行简单的概括、推理。
教学重点:
掌握亿以上数的写法。
教学难点:
每级中间或末尾有0的数的写法。
教具准备:
小黑板、投影片、数位表
教学过程:
教学内容教学时间教师活动学生活动
复习6′
1、万以内的数是怎样写的?请写出下列各数:
四千零七十七百八十四千零三
2、板书课题,导入新课。
1、学生在自备本上写数后交流。
新课22′一、教学例2:
1、板书:三亿三十亿九千万七千零三亿零二十万。问:这些数怎样写?
2、问:这些数的位在哪位上?万位上是几?其它数位分别是几?怎样写?板书:
三亿写作300000000
三十亿九千万写作3090000000
七千零三亿零二十万写作700300200000
3、想一想:整亿的数怎样写?
4、重点分析“七千零三亿零二十万”这一中间有零数的题型
5、练习:做一做中的练习。
1、学生试写。
2、学生根据自己的写法回答。
3、学生归纳:有多少亿,就在亿级上写多少,再写8个0。
4、学生练习。
小学四年级数学苏教版上册教案篇4
教学目标:
1.通过教学使学生认识各种计算工具,对算盘和计算器有一定的了解。
2.培养学生学习数学的兴趣。
3.使学生感受生活中处处有数学。
教学重难点:
认识算盘、计算器,计算器的使用。
教学关键:
能够自学了解算盘与计算器的使用方法。
教具准备:
算盘、计算器。
教学过程:
课前参与:查找有关计算工具的资料,准备一下,把你所认识的计算工具用最清楚的方式介绍给大家。
一、计算工具的历史
(一)课前参与反馈(学生介绍计算工具)
前面我们了解了数是怎样产生的,随着数的产生,就会出现数的计算,为了计算方便,人们发明了各种各样的计算工具,课前同学们进行了有关资料的查询,谁来给大家介绍一下你所了解的计算工具?
学生发言。
(二)老师根据学生介绍的情况补充介绍计算工具的发展历史
计算工具的源头可以上溯至2000多年前的春秋战国时代,古代中国人发明的算筹是世界上最早的计算工具。在大约六、七百年前,中国人发明了更为方便的算盘,并一直沿用至今。许多人认为算盘是最早的数字计算机,而珠算口诀则是最早的体系化的算法。
计算尺的出现,开创了模拟计算的先河。从冈特开始,人们发明了多种类型的计算尺。直到20世纪中叶,计算尺才逐渐被袖珍计算器取代。
从17世纪到19世纪长达两百多年的时间里,一批杰出的科学家相继进行了机械式计算机的研制,其中的代表人物有帕斯卡、莱布尼茨和巴贝奇。这一时期的计算机虽然构造和性能还非常简单,但是其中体现的许多原理和思想已经开始接近现代计算机。
最古老的计算工具:算筹
我国春秋时期出现的算筹是世界上最古老的计算工具。计算的时候摆成纵式和横式两种数字,按照纵横相间的原则表示任何自然数,从而进行加、减、乘、除、开方以及其它的代数计算。负数出现后,算筹分红黑两种,红筹表示正数,黑筹表示负数。这种运算工具和运算方法,在当时世界上是独一无二的。
中国人发明算盘
随着计算技术的发展,在求解一些更复杂的数学问题时,算筹显得越来越不方便了。于是在大约六、七百年前,中国人发明了算盘,它结合了十进制计数法和一整套计算口诀并一直沿用至今,被许多人看作是最早的数字计算机。
一般的算盘大都是木制的,算珠也是木制的。后来发展到用铜等金属制作算盘。高档的算盘用玉制作。算珠除了圆柱形的算珠,也有截面为菱形的算珠。的算盘有几米长,最小的只有几厘米。
算盘可以进行加减乘除各种运算。时至今日,用算盘计算加减法的速度毫不逊色于计算器。
算盘上粒粒算珠的上下左右移动,可以使计算者直观的看到加减乘除的运算过程。算珠互相碰撞及算珠与横档的碰撞发出的有节奏的声音,形成一首美妙的“计算进行曲”。计算者从声音中体会到计算的愉快。这些愉快的感觉反映到俗语中,“三下五去二”、“管它三七二十一”,“劈里拍拉的算账”。
利用算盘进行计算时,不仅要用手指不断的拨动算珠,还要用眼睛看数,同时要不停的动脑筋。这是非常典型的手脑并用,对提高智力,开发右脑是一种好方法。有学者指出,学珠算练手指是开发智力的有效途径。
由于用算盘计算有这么多的优点,所以这个在中国已使用了二千多年的计算工具,现在在世界各地仍得到广泛应用。在受中国文化影响比较深的日本、韩国、东南亚,珠算技术的`传授及普及教育一直受到重视。日本的小学生把读书、写字、打算盘列为三大基本功,日本的珠算教育在世界上处于地位。日本全国的算盘学校高达35,000所。韩国的珠算教育近年来也取得了长足的发展。
即使远在南美洲的巴西,也成立了珠算联盟,每年进行4次珠算考核和二次珠算大赛。北美洲的墨西哥有全国珠算支部,美国有珠算教育中心,有1,000多所学校接受珠算教育,算盘正成为美国的一种数学教学工具。
计算机
1946年美国宾夕法尼亚大学经过几年的艰苦努力,研制出世界上第一台电子计算机──埃尼阿克(eniac)。随着科学技术的进步,计算机不断更新。目前,速度快的计算机1秒钟能计算几十万亿次。计算机的大小也发生了很大的变化,世界上第一台计算机大约有一间房间那么大,现在有台式电脑、笔记本电脑,还有掌上电脑。
计算机发展史:
■1946年发生了人类历一件划时代的大事人类第一台电子计算机诞生了。
■以使用电子管为特点的第一代电子计算机在20世纪40年末和50年代初获得重大发展。
■第二代电计算机于20世纪50年代中期间问世以晶体管代替电子管并增加浮点运算。
■19__年ibm360系统问世它成为使用集成电路的第三代电子计算机的代表。
■使用超大规模集成电路的第四代计算机。
■第五代电子计算机被称为智能计算机。
■模仿人类大脑功能的神经计算机已经开发成功它标志着电子计算机的发展进入第六代。
二、算盘和计算器的认识与使用
1.算盘。
刚才同学们介绍了许多的计算工具,其中算盘是我们中国所特有的,现在在许多地方还能见到。你认识算盘吗?对算盘有哪些了解?
(1)算盘各部分名称
算盘的长方形的框内装有一根横梁,梁上钻孔镶上小棍数根,称为档。每根上穿一串珠子,叫算盘子儿或算珠。
常见的算盘是两颗算珠在横梁上,每颗代表五;五颗在横梁下,每颗代表一。计算时按规定的方法拨动算盘子儿而得出计算结果。
在拨数时要先定好数位,规定哪档是个位,然后再拨数。(规定从右往左数第三档为个位)
拨出一个数,说一说这表示多少?
(2)两种不同的算盘:
出示两种不同的算盘(书23页图):
观察有什么不同。
左边的算盘是中国算盘,上面有两颗珠子,每颗代表5。
后来算盘发展到日本,逐渐演变成右边这样,上面变成了一颗珠子。
原因是:原来是中国采用的是16进制,满15进1,所以算盘每档上是15;进入日本后,采用的是十进制,所以算盘的上面剩下1颗珠子。
(3)算盘的两种功能:计算和计数
2.计算器。
(1)计算器的使用非常的广泛,你认识计算器吗?
出示一个计算器,你能说说每个键的功能吗?
显示屏、时间键、日期键、清除键、开关及清除屏键、存储运算键、括号键、数字键、运算符号键、等号键等。
(2)让学生看课本自学,边看自己的计算器边看书,然后小组交流。
(3)计算器的使用与算盘相比有什么优势?
(4)全班看计算器,师生对口令。
三、总结
计算器的使用为我们带来了许多的方便,通过使用计算器,你觉得计算器如果具备哪些功能就更好了?不妨我们去找一找是否有具备这种功能的计算器,该如何使用,更希望同学们能利用自己的聪明才智发明出更好的计算工具。
四、作业:
1.继续查找有关计算工具的资料。(有兴趣的同学,如果能根据计算工具的发展史将其罗列就更好了。)
2.了解计算器的其他功能。
小学四年级数学苏教版上册教案篇5
教学内容:
人教版义务教育课标实验教材(四上)112的例1
教学目标:
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。
教学重点:
体会优化思想。
教学难点:
探究解决问题的最优方案。
教具准备:
多媒体课件、探究用表格
学具准备:
三张圆纸片。
教学过程:
一、创设情境,生成问题
1、同学们家里有厨房吗?你们进过厨房吗?进去做什么?厨房里有什么数学问题吗?
2、我们来看看王华家厨房里的数学问题。(课件出示例1图)中午放学回家,王华发现妈妈正在厨房准备烙饼。(板书课题:烙饼问题)
师:“从图上你能得到哪些信息?”学生观察、理解图中的内容。
(这一环节是通过创设出生活化的情境,激发学生的学习兴趣。利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)
教师提问:“妈妈烙一张饼最少需要几分钟?” “如果妈妈要烙2张饼最少需要几分钟,怎样烙?”
小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。
师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?”
二、探索交流,解决问题
1、学生操作,探究烙3张饼的方法。
让学生用发的圆片烙一烙,同桌说说用了几分钟,是怎样烙的。(圆片的正、反面上分别写着正、反两字来代表饼的正、反面。)教师参与到小组活动中。
(相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)
2、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。(学生上黑板动手烙,边烙边说)
让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”
得出结论:9分钟是烙3张饼所用的时间最短的,我们就把(烙3张饼所需时间最短的)这种方法,叫快速烙饼法。(教师板书快速烙饼法)
教师用课件演示烙三张饼的方法并小结:先把饼1、饼2同时放进锅里,先烙饼1、饼2的正面,3分钟后,取出饼1,放入饼3,再同时烙饼2的反面和饼3的正面,3分钟后,饼2烙好了,取出饼2,再放入饼1,再同时烙饼1和饼3的反面,又过了3分钟,饼1和饼3烙好了,这样烙3张饼就用了9分钟。
师:老师是用什么方法烙的?(也是用快速烙饼法)
师:使用这种方法时,你发现了什么?
(1、使用快速烙饼法,锅里面必须同时放2张饼。2、用的时间短。)
让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。
(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)
3、拓展延伸:
师:(出示表格,边说边点击表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”
小组活动,通过小组交流,使学生找到最佳方法。
教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”
(通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)
在这样过程逐步形成课件表格.饼数
2 3 4
同时烙两张饼 快速烙饼法 两张两张地烙
先烙两张,后三张用快速5 烙饼法
两张两张地烙
18 15
烙 饼 方 法
最少所需的时间(分)
6 9 12
7 8 9 10
21 24 27 30
4、探究规律。
让学生仔细观察表格、小组讨论交流,说一说自己的发现。
(根据情况决定是否给学生启示:
1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?
2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)
学生在充分交流探讨的基础上,得出结论:
1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。
得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)
教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”
(通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。)
三、实践应用,内化提高
课件出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”
1、引领理解题意。
2、全班交流
四、回顾整理,反思提升
1、这节课你学到了什么?
2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。
小学四年级数学苏教版上册教案篇6
三位数除以两位数的估算
【教学内容】
义务教育课程标准实验教科书(西师版)四年级上册第101页例2,课堂活动以及练习十九第5~8题。
【教学目标】
1.掌握三位数除以两位数的估算方法,并能熟练进行相关估算。
2.在尝试练习中掌握两位数的估算方法。在解决实际问题中掌握具体的数量关系。
3.在解决问题中学会用数学眼光看待生活现象,并在探索算法的过程中获得成功的体验,提高对数学的认识。
【教具学具准备】
主题图片、视频展示台等。
【教学过程】
一、创设情景、回顾知识
1.口算:80÷490÷30800÷20 120÷4540÷903200÷802.
2.求下面各数的近似数。23866721(省略千位、百位后面的尾数)
3.估算:79÷459×42 183÷6310×194.
提问:除数是一位数的除法该怎样估算?
教师:今天我们继续探讨估算除法。
(板书:估算除法)
[点评:充分利用学生已有的估算经验,做好知识的孕伏工作;同时为分散本节课的知识难点做好铺垫工作。]
二、独立尝试、合作研究
1.出示例2主题图:从重庆出发,普通客船每时行20km,大约( )时可以行207km。口头列式并解答,说一说你是怎样估算的?
要点:将207km看作200km,200÷20=10(时)
2.出示例2第一组信息。提出问题,连贯的'说一说条件和问题。
从重庆到三峡大坝全长624km,如果乘坐普通客船每时行23km,去三峡大坝大约需要多少时?
(1)列式并说一说为什么用除法?要点:624里有几个23就要行几时(为小结数量关系“路程÷速度=时间”作好铺垫)。
(2)说一说你是怎样估算的?要点:可以把624看成600,把23看成20,再口算。也可以把624看成620,把23看成20,再口算。根据学生的回答进行梳理并板书。624÷23≈30(时) 624÷23≈31(时) 600÷20=30620÷20=31
3.独立尝试练习,例2第二组信息。
从三峡大坝到重庆全长624km,如果乘坐高速快船每时行52km,回重庆大约需要多少时?
(1)列式并估算。
(2)说一说你是怎样估算的?若有不会的同学,可以请教同桌、同组同学或老师。
(3)集体交流——分两个方面。
第一,为什么用除法?(624里有几个52就要行几时)
第二,你是怎样估算的?(把624看成600,把52看成50,再口算) 624÷52≈12(时) 600÷50=12
[点评:让学生在猜测中学会迁移能力,并在与同学的交流中达成对猜测能力的认同感,在不断地观察和交流中,从具体逐步过渡到抽象。学生在经历知识形成的过程中逐步上升为估算知识的理性思考。]
三、小结提升、完成板书
小结:(1)除数是两位数的除法怎样估算?被除数看作整百数(或几百几十数),除数看作整十数,再相除。
(2)从解决上面的问题中你发现了怎样的数量关系?路程÷速度=时间。
四、练习巩固、熟练估算
1.第102页课堂活动。
(1)180÷90=2(时)为什么这样列式?路程÷速度=时间。
(2)581÷7=83(千米)又能发现怎样的数量关系?路程÷时间=速度。
(3)762÷75≈10(时)怎样估算的?
2.教科书第103页5~8题