数学六年级上册教案模板5篇

时间:2025-09-12 作者:Kris

出色的教案可以让教师在教学中不断探索新的教学理念,为了提高教学质量,我们必须认真撰写教案,下面是85报告网小编为您分享的数学六年级上册教案模板5篇,感谢您的参阅。

数学六年级上册教案模板5篇

数学六年级上册教案篇1

20xx年人教版六年级数学上册教案姓名:沈金鹏

学号:134080303

院、系:数学学院

专业:数学与应用数学

20xx年1月22日

第二单元位置与方向

教学目标:

知识与技能:

1.通过解决实际问题,了解确定位置的方法,能根据方向和距离确定物体的位置。2.会看简单的路线图,能根据路线图说出行走的方向和路线。

过程与方法:

1.通过解决实际问题,体会确定位置在生活中的应用。

2.探索和发现确定位置的有效方法。

情感态°价值观:

1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

教学重点:

通过学习了解确定位置的方法,能根据方向和距离确定物体的位置。会看简单的路线图,能根据路线图说出行走的方向和路线。

教学难点:

在学习过程中,发展学生的合情推理能力,使学生能进行有条理的思考,能比较清楚地表达自己的思考过程和结果。

课时安排:

六年级上册第二单元:位置与方向

第1课:位置与方向㈠

教学内容:教材第19、20页相关内容及练习题

知识与技能:

1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的

方法。

2.学会通过测量描述物体在平面图上的具体位置,并会根据描述在

平面图上画出物体的具体位置。

过程与方法:通过小组合作交流探讨,掌握画图的方法。

情感态度价值观:

1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

重点:能根据任意方向和距离确定物体的位置。

难点:根据描述标出物体在平面图上的具体位置。教学目标:教学重难点:

教学方法:合作交流、共同探讨

教师:多媒体课件,直尺、量角器等。教、学具准备:学生:直尺、量角器。

教学过程:

一、情景导入

1.交流例题1中有关台风的消息。

⑴同学们听说过台风吗?你对台风有什么印象?

⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向a市移动。

师:听到这侧消息,你有什么感想?

启发学生交流,引导学生关注台风的位置和动态。

2.导入新课

现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。

[板书课题:位置与方向(一)]

?设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。

二、探究新知

??教学题例1

1.投影出示例题1。

学生观察情境图,交流从图中信息?

(启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)

2.交流确定台风中心具体位置的方法。

⑴让学生尝试说说台风中心的具体位置。

⑵教师结合学生的汇报情况进行引导。

提问:东偏南30°是什么意思?

(东偏南30°表示的是台风中心位置相对于a市所在的方向,也就是台风中心位置与a市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)

⑶小结确定位置的方法。

提问:如果只有一个条件,能够确定台风中心的具体位置吗?

引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。

3.组织计算。

师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市

呢?

学生独立计算,组织交流。

600÷20=30(小时)

(二)教学例题2

1.投影出示例题2。

提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。

2.尝试画图。

⑴学生独立思考怎样标出B市、C市的具体位置。

⑵小组交流作图的方法。

⑶尝试画图。

教师巡视交流,参与部分小组讨论,辅导有困难的学生。

3.组织全班交流。

投影展示学生完成的作品。

组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。

B市:先确定方向,用量角器量出A市的'北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。

C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。

4.算一算。

台风到达A市后,移动速度变为40千米/时,几小时后到达B市?

200÷40=5(小时)

5.总结画图的基本步骤。

交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?

总结:

(1)确定平面图中东、西、南、北的方向。

(2)确定观测点。

(3)根据所给的度数定出所画物体所在的方向。

(4)根据比例尺,定出所画物体与观测点之间的图上距离。

?设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。

三、巩固练习

1.教材第20页“做一做”。

这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。⑴让学生独立进行测量、计算、填空。

⑵组织交流。

让学生说说是怎样测量方向的,怎样计算距离的。

2.教材第21页“做一做”。

⑴学生独立进行画图。

⑵投影展示,组织评议。

⑶交流画图的方法。

四、课堂小结

今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。

数学六年级上册教案篇2

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的'计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求小时走了多少千米,也就是求2个,算式:2×

再求3个小时走了多少千米,算式:2× ×3

(5)综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算÷,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、p31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

数学六年级上册教案篇3

教学目标:

1、结合具体事例,经历综合运用所学知识解决合理购物问题的过程。

2、了解合理购物的意义,能自己做出购物方案,并对方案的合理性作出充分的解释。

3、体验数学在解决现实问题中的价值,丰富购物经验。

重难点分析:

教学重点:学会理财,能对自己设计的理财方案作出合理的解释。

教学难点:能对自己设计的理财方案作出合理的解释。

教学过程

一、创设情境

师:同学们,现实生活中,商家为了吸引顾客或扩大销售量,经常搞一些促销活动,谁来说一说,你都知道哪些促销方式?

师:同学们知道的可真多,日常生活中,我们如何利用商家的促销手段,学会合理购物呢?

二、促销问题

(一)观察情境图,先了解方便面的三种包装和一袋的价格,计算出其他两种包装的价格写在书上,再了解三个商店的优惠条件。

师:这节课,我们就来研究购物问题。

板书:学会购物

师:同学们打开书第80页,看方便面促销问题,认真观察上面的图,说说你们从图上都发现了哪些信息?

师:一袋方便面1.5元,5袋一包的多少钱?24袋一箱的多少钱?

师:三家商店都买这种方便面,他们推出了不同的优惠条件。看图,说一说甲、乙、丙三个店的优惠条件各是什么?

生:我发现甲店是“买一包送一袋,买一箱送一包。”乙店是打九折优惠;丙店是购物达到30元就能打八折优惠。

(二)提出:不计算,判断买一袋方便面去哪家商店合适的问题,学生发表意见后,再

讨论“买2袋、3袋呢?”“买几袋才能享受甲店的优惠条件?”

师:作为消费者,买同样的东西肯定愿意买便宜的,也就是少花钱。同学们不计算,你能判断出买1袋方便面去哪家店合适吗?

生:在乙店合适,因为买一袋在甲店、丙店都得不到优惠。

师:那买2袋、3袋呢?

生:买2袋、3袋也不行。

师:买几袋才能享受到甲店的优惠条件呢?

生:买5袋或5袋以上就可以得到甲店的优惠条件。

(三)提出:买5袋方便面在哪个店合适的问题。学生计算后,全班交流。

师:你们真聪明。那么,如果要买5袋,算一算,甲店便宜还是乙店便宜?

学生算完后,指名回答。

(四)先讨论买7袋方便面在甲店可以怎样买,再让学生计算买7袋方便面在哪个商店合适,然后交流。

师:现在如果想买7袋方便面,在甲店可以怎样买?

生:只买6袋就行了。因为商店会送一袋。

师:真聪明,那就是说,要买7袋,只算6袋的钱就可以了。那大家算一算,买7袋方便面,在哪个商店买比较合适?

学生自己计算,然后交流。

甲店:1.5×6=9(元)

乙店:1.5×7×90%=9. 45(元)

结论:甲店合适。

(五)提出:买几袋方便面到乙店就比较合适的问题,鼓励学生自主计算。然后,交流学生探索的过程和结论。

师:通过比较计算结果,买7袋去甲店合适。那么买几袋方便面到乙店就比较合适呢?请同学们自己算一算。

学生自主计算,教师个别指导。

师:谁来说一说你是怎样做的,结果是什么?

如果有学生算到10袋就推出结论,给予表扬。

(六)提出:买10袋方便面能享受丙店的优惠条件?得到否定的答案,并算出买20袋才能达到丙店的优惠条件。

师:现在,请同学们想一想,买10袋方便面能享受丙店的优惠条件吗?

生:不能。因为买10袋方便面才花10元钱,不够丙店的优惠条件。

师:那买多少袋方便面才能达到丙店的优惠条件呢?请同学们算一算。

学生计算后汇报:

生:30÷1.5=20(袋),买20袋才能达到丙店的优惠条件。

(七)提出问题(4)启发学生计算,然后用计算法等说明问题的原因,进一步认识到“合理购物”的意义。

师:看来丙店的优惠条件不是很容易享受到的。请同学们课件中第(4)个问题。两位同学都在丙店买方便面,奇怪的是,李明花钱多买的少,而王强花钱少买的多,这是为什么?

请同学们讨论,并算一算是什么原因。(学生独立计算)

师:谁能解释这到底是为什么?

生1:李明只花了27元不够丙店的优惠条件。

生2:因为王强买了20袋,20×1.=30(元),可以打八折优惠,所以只花了24元,20×1.5×80%=24(元)

师:通过这两位同学的经历,你们有什么收获?

生:在购物时,一定要先算一算在哪家购物合适,才去买,就能充分利用商家的促销手段,少花钱多购物。

(八)出示“议一议”问题,启发学生可以算一算,然后,交流解决问题的方法和结果。

师:那么现在请大家发挥你的聪明才智讨论一下,如果买35袋方便面,怎样买比较合适?也可以算一算。

给学生思考和计算的时间。

师:谁愿意说说你是怎样判断的,结果是什么?

师:比较这几位同学的方案,哪一种比较合适?

结论:在丙店买最合适。

师:比较一下上面几种购买方案,我们发现,最合适的要少花5元多钱,所以,购物时我们要根据购物多少的不同,选择不同的商店,充分利用商家的优惠政策,就能够少花钱多购物,这种“合理购物”。

三、有奖销售

(一)出示“购物广场”上的销售广告,学生阅读了解广告中的数量信息。

师:为了促进销售,商家还会搞另外一种促销方式——有奖销售。现在让我们到购物广场去看一看吧。打开书77页,读一读上面的销售广告。

学生阅读“购物广场”上的销售广告。交流一下广告中的信息。

(二)出示问题(1),计算奖金额和中奖率。

师:根据这则广告,请同学们算一算,这次有奖销售活动的奖品总金额是多少元?中奖率是百分之几?

学生独立思考并计算。然后全班交流。

1、奖品总金额:500×10+100×20+50×60=10000(元)

2、中奖率:(60+20+10)÷1000=9%

(三)出示问题(2),学生计算销售额,并分析奖金额与销售额之间的关系,进一步认识“有奖销售”的意义。

师:谁知道如果奖券已经全部发出,商家至少卖出了多少元的商品?

生:商家每发出一张奖券,说明至少已卖出了100元商品,所以1000张奖券全部发完,1000×100=100000(元),商家至少卖出10万元的商品。

师:为什么用“至少”这个词?

生:因为还有很多顾客买的商品不足100元或超过整百的余额部分不能领取奖券,我们无法计算。

师:那么奖金额至多占销售额的百分之几?

学生计算后汇报。

生:奖金额是10000元,而销售额是100000元,10000÷100000=10%,奖金额最多占销售额的10%。

师:至多“10%”说明了什么?

生:说明最多占10%,很可能不到10%。

师:算一算,这次有奖销售,商家计划让利给顾客多少钱?

生:1万元。

四、分析讨论

(一)教师谈话,提出问题(3),让学生自主计算。

师:很好。我们了解到这个商家有奖销售让利给顾客1万元,现在我们换一种方式比较一下,如果这10万元的商品全部按八五折销售,同学们算一算,会让利给顾客多少元?

学生独立思考、计算。生:100000—100000×85%=15000(元)

(二)分别提出“议一议”的两个问题,让学生充分发表自己的意见。教师进行正确引导。

师:请同学们对比一下这两种结果,你有什么感想?

师:那么如果你是顾客,你会选择哪种销售方式?为什么?

师:大家都可以有不同的想法,但是,我们还是小学生,不能单独参与抽奖活动。如果要做,也要在大人的带领下去做。

数学六年级上册教案篇4

第一单元方程

教学内容:p7“回顾与整理”、“练习与应用”第1—4题

教学目标:

1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。

2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。

教学资源:小黑板

教学过程:

一、揭示课题

本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。

二、回顾与整理

1、出示小组讨论题:

(1)像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解?

(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。

2、让学生围绕这两个问题进行独立思考。

3、把各自思考的情况在小小组内进行交流。

4、全班交流。

讨论题(1)可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。

三、练习与应用

1、解方程

180+6x=33027x+31x=145x-0.8x=10

2.2x-1=1015x÷2=604x+x=3.15

(1)让学生独立完成,指名板演。

(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。

2、解决实际问题

(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。

①武汉长江大桥铁路桥长多少米?

②武汉长江大桥公路桥长多少米?

让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:

武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度

武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度

问:在列方程时应该怎样表示题中的两个未知数量?

(2)练习与应用第3题

先让学生看图后说说了解到了哪些信息。

问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?

问:你能说说题中数量之间的相等关系吗?

(学生如有困难,教师可以画线段图帮助学生理清数量关系)

随机板书:

小树原有的高度+6个月长的高度=小树现在的高度

(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?

学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。

再让学生独立解答,指名板演。

交流时让学生结合所列的方程说说自己的思考过程。

三、总结:通过今天的整理与练习,你又有哪些收获?还有什么疑惑?

四、作业:p7“练习与应用”第2、3题。

数学六年级上册教案篇5

教学目标:

使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。

教学重点:

整数除以分数的计算方法的推导。

教学难点:

理解“÷”转化为“×”的转化过程。

教学过程:

一、复习

1、说一说÷18的意义。

2、一辆汔车2小时行驶90千米,1小时行驶多少千米?

(1)口述算式和结果。

(2)板书:数量关系:速度=路程×时间

二、新授

今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?

板书课题:一个数除以分数

(1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?

教师板书:18÷ (出示线段图)

(2)推导18÷的计算方法。

引导学生分两步进行计算

第一部分:求小时行多少千米。

提问

1)、小时里面有几个小时?

2)、2个小时行驶多少千米?

3)、1个小时行驶多少千米?即小时行驶多少千米?

明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。

提问

1)、1小时里面有几个小时?

2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?

明确

1) 为1小时5个小时,所以,要算18××5,也就是18×。

2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。

根据上面的推想,板书:18÷=18×,=45千米

答汔车1小时行驶45千米。

强调

1)18÷不便于直接除,把它转化乘法。

2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。

3)是的倒数,即的`倒数是。

2、小结:引导学生归纳整数除以分数的计算方法。

板书:整数除以分数可以转化为乘以这个数的倒数。

三、巩固练习

1、在( )里填上适当的分数,使等式成立。

15÷=15×( )10÷ =10×( )

8÷=8×( ) ÷9=×( )

2、列式计算。

(1)一堆煤,每次用去 ,多少次才能用完?

(2)王晶小时做15朵花,1小时做多少朵花?

3、教科书第29页的“做一做”

四、作业 练习八第1——4题。